New Metrics for Hurricane Impacts

Mark Powell
NOAA AOML
Hurricane Research Division, Miami FL

Tim Reinhold
Institute for Business and Home Safety, Tampa FL
• Risk Perception
Despite excellent forecasts and warnings, people act on perceived vulnerability

- Past experience influences perception (Baker 2006, Wilkinson and Ross 1970)
- Those who experienced significant loss are more likely to act in the future (Shulz et al 2005, Miletti 1992)
- Experiences from Hurricane Camille of 1969 influenced actions taken in Katrina
- Camille and Katrina were very different storms
Americans need a better way to assess the risk of hurricanes
Saffir-Simpson categories contribute to casualties

The Saffir-Simpson Hurricane Scale is lulling coastal residents into a fatally false sense of security. That's because the scale's five single-digit categories distort the danger of an approaching tropical weather system.

It happened during Hurricane Katrina, when some South Mississippians made the mistake of underestimating the hurricane's threat by comparing it to Hurricane Camille. Because Camille was a 5 on the Saffir-Simpson scale and Katrina was weakening into a 3, some people assumed Katrina was less of a threat to their lives and property.

That assumption cost some people their lives. Biloxi Mayor A.J. Holloway said the day after Katrina: "It looks like Hurricane Camille killed more people yesterday than it did in 1969." While Katrina's winds were slower than Camille's, its unprecedented storm surge was far deeper and deadlier.

The same thing just took place in Texas, where coastal residents understandably but regrettably compared Hurricane Ike, a deceptively low-level Category 2, to previous higher-level storms and decided not to evacuate. We appreciate that perfection is not possible.
Motivation for a new hurricane metric:

- Intensity is important but independent of size
- Wind radii are important but independent of intensity
- Destructive potential depends on both
- We need a metric to convey this to the public
• Wind stress on the ocean scales with the square of the wind speed

• Forces waves and storm surge
Wind Damage increases dramatically at ~ 55 m/s

% Damage claim/insured value

Threshold damages
- at 2%
- 12%
- 60%

Wind Speed
• **Integrated Kinetic Energy (IKE)**

 ![Equation]

 \[IKE = \frac{1}{2} \int v^2 \, dV \]

 • Kinetic energy/ volume

 • Scales with the square of the wind speed and the areal coverage of damaging winds

 • Contributions of IKE over various wind thresholds

 • Sum grid cell KE \(\sim 5 \times 5 \) km, 1 m deep at 10 m

 • IKE range from H*Wind archive
• **Surge / Wave Destructive Potential (SDP):**

 • Depends on IKE from winds > tropical storm force

 • A large TS can be more destructive than small hurricane

 • Actual destruction depends on local effects
Kinetic Energy and SDP Calculator at: www.aoml.noaa.gov/hrd/ike

NW34(nm): 180	NE34(nm): 200
NW50(nm): 120	NE50(nm): 120
NW64(nm): 90	NE64(nm): 90
SW64(nm): 50	SE64(nm): 90
SW50(nm): 75	SE50(nm): 120
SW34(nm): 125	SE34(nm): 180

Results

Entire Storm

Storm Total IKE_{TS} (TJ)	38.576
Storm Total IKE_{50-H} (TJ)	22.843
Storm Total IKE_{H} (TJ)	105.853
IKE_T5(TJ)	167.272
SDP	5.452

H. Katrina 2005-08-28 1800z
Integrated Kinetic Energy for winds > TS force in Terra Joules

Camille Landfall
63 TJ

Katrina 28th
117 TJ

Katrina Landfall
112 TJ

Integrated Kinetic Energy for Winds > TS force: 117 TJ for Winds > Hurricane Force: 42 TJ
Destructive Potential Rating: 8.3
Wind: 5.8
Surge/Waves: 5.8

Integrated Kinetic Energy for Winds > TS force: 42 TJ for Winds > Hurricane Force: 117 TJ
Destructive Potential Rating: 9.3
Wind: 5.8
Surge/Waves: 4.9

Experimental research product of NOAA / AOML / Hurricane Research Division
Integrated Kinetic Energy for winds > TS force in Terra Joules, SDP, SS

Camille Landfall
63 TJ SDP 4.1 SS

Katrina Landfall
112 TJ SDP 4.9 SS3

Ike day before Landfall
149 TJ SDP 5.4 SS 2

Hurricane Katrina 1158 UTC 29 AUG 2005
Max 1-min sustained surface winds (kt)
Valid for marine exposure over water, open terrain exposure over land
Analysis based on 1 from 0430z - 80m z - 1000 z - 2135 z - 2330 z
2 from 0430z - 0015z

Hurricane Ike 1330 UTC 12 SEP 2008
Max 1-min sustained surface winds (kt)
Valid for marine exposure over water, open terrain exposure over land
Analysis based on 1 from 0430z - 0900z - 1200z - 1600z - 1900z - 2100z
2 from 0430z - 0900z - 1200z - 1600z - 1900z - 2100z
• SDP and SS comparison to Alongshore extent of >1 m surge inundation

• *Irish and Resio 2009, in review, Ocean Engineering, using approach described in Irish and Resio, JPO 2008.*
• SDP is a means to compare storms based on oceanic wind field forcing alone

• Correlates best with alongshore inundation relevant to evacuation and damage from surge and waves (r^2 of 52% for extent of surge >1 m ($n=17$ storms), 34% for >2 m ($n=14$ storms)

• Independent of bottom slope or coastline shape so correlation with peak surge height is smaller (r^2 of 10% compared to 8% for SS, 19 storms)

• SDP can enhance the Saffir-Simpson scale for cases in which large wind fields supply ample forcing for surge and wave damage

• SDP is relatively simple to compute, insensitive to the max wind value, with the same range as the SS scale
For more information see: Bulletin of the American Meteorological Society April 2007