

Applied Sciences NASA's Decadal Survey Missions and Natural Disasters Program

Andrea Donnellan and Michael Goodman Program Area Leads

> Last Updated September 18, 2009

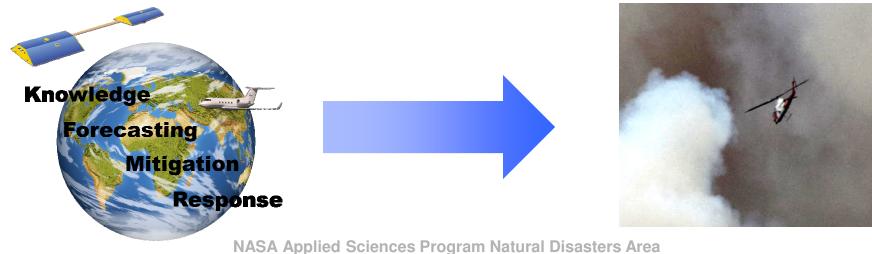
NASA, Natural Disasters, and the SDR

- NASA is a research agency
- In the event of a disaster NASA applies available assets
- Some overlap between disaster response and science
 - Immediate need for information greater for disaster response than for science
- + Challenge is to move from research to operations
 - Need existing partnerships and collaborations
 - Simulations develop communication and identify existing gaps
- Decadal survey missions provide an opportunity to engage in the process early
 - Design missions for disaster mitigation and response as much as possible
 - Engage agencies in the design process
 - Additional needs or capabilities may require agency contributions

A Recent Example: Wildfires August 29, 2009 El Prieto Road, Altadena, California

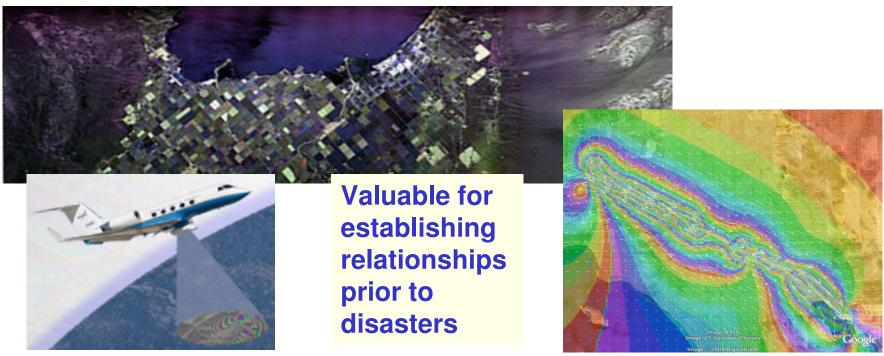
NASA Applied Sciences Program Natural Disasters Area

2009 Los Angeles Area Station Fire


+ Over 145,000 acres and over 90 structures burned Over 10,000 homes and 2500 other structures threatened Information difficult to obtain Not updated frequently ____ INCIDENT UPDATED 8 HRS. AGO Different information from different sources tude reset view □ Not at the individual or neighborhood level resolution Traffic More... Map roximate Fir Traffic More... Map Satellite mate Fire Location My house . My house Evacuat

y e2009 Digital Global Gode yo, U.S. Ga. Angical Survey, Map data e22009 Tele Allas 🖉 m Natural Disasters Area

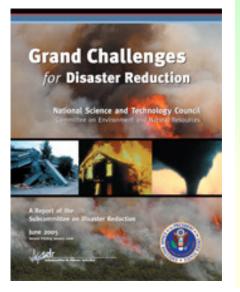
Flow of Information


- Communication between individuals occurred by
 - On scene people
 - + Ground observers transmitting information to command center
 - + Sheriff asking fire personnel for status updates as they drove out
 - Displaced people asking for information
 - Social networks
 - Telephone and e-mail
- + Capabilities of SDR members range from spaceborne to ground logistics
- + How can we establish a clear flow and connections between the agency capabilities to reduce impacts of natural disasters?

Simulated Exercises: Southern California Shake Out

- Simulated earthquake on the San Andreas fault
 - Extensive participation in California
- + Walked through logistics of acquiring UAVSAR data
- Provided UAVSAR imagery (or simulated imagery) to the State Operations Committee
- + Need understanding of what the imagery means

NASA Applied Sciences Program Natural Disasters Area



Purpose

To bring NASA capabilities in the area of spaceborne and airborne platforms and observations, higher level data products, and modeling and analysis to improve forecasting, mitigation, and response to natural disasters

Derived from the White House Office of Science and Technology Policy (OSTP) **Subcommittee on Disaster Reduction** (SDR)

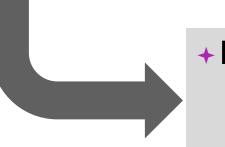
+ Six Grand Challenges

- Provide hazard and disaster information where and when it is needed
- Understand the natural processes that produce hazards
- Develop hazard mitigation strategies and technologies
- Recognize and reduce vulnerability of interdependent critical infrastructure
- Assess disaster resilience using standard methods
- Promote risk-wise behavior

7

Disasters as Defined in

Grand Challenges for Disaster Reduction (http://www.sdr.gov)


Earth Surface

- Volcano
- Earthquake
- Tsunami
- Coastal Inundation
- Flood
- Landslide and Debris Flow
- Wildland Fire

+ Weather

- Hurricane
- Tornado (not currently funded by NASA)
- Winter Storm
- Heat wave
- Drought

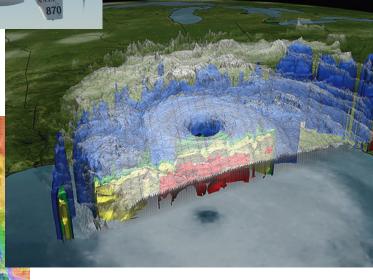
NASA funds projects in these areas

+ Health and well being

- Technological Disasters
- Human and Ecosystem Health

NASA Capabilities

+ Spaceborne


- Existing missions: MODIS, ASTER, LANDSAT, QuickSCAT, JASON..
- Decadal survey missions: SMAP, DESDynl, HyspIRI

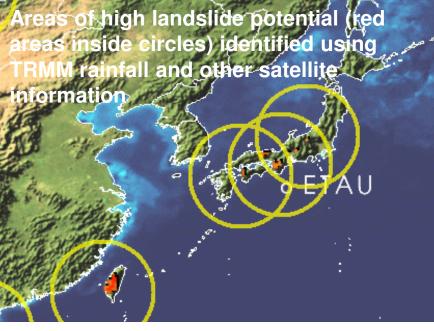
+ Airborne

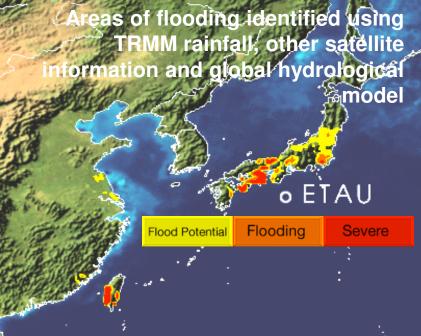
- UAVSAR Radar
- LVIS Lidar
- Thermal Infrared
- Data processing and analysis
- + Modeling and analysis

NASA Applied Sciences Program Natural Disasters Area

NASA Missions

Natural Disaster Program Current Projects




Ear	thquake	Tsunami		
Active Fault Detection and Evaluation from Multispectral Imagery and LiDAR	Earthquake Disaster Evaluation and Response	Earthquake and Tsunami Alert System from Real-Tim GPS		
Florante Perez Department of Conservation, California Geological Survey California Department of Conservation	Margaret Glasscoe Jet Propulsion Laboratory USGS, CGS, OES	Yoaz Bar-Sever JPL		
U.S. Hurricane Landfall and	rricane Enhanced Decision Making	Flood/Landslide Global Flood and Landslide		
Climate: Reinsurance Decision Support	using NASA Data within NOAA, NWS, and FEMA	Monitoring/Forecasting Fritz Policelli/Bob Adler		
Timothy Hall NASA Goddard Institute for Space Studies	Dave Jones StormCenter Communications, Inc.	GSFC/UMD		
NASA/Goddard Space Flight Center	NWS SR HQ, FEMA REGION VI, MSFC			
Wildfires Predicting Forest Fire from Microwave Sensing of Fuel Loads Sassan Saatchi University of California, Los Angeles University of California, Los Angeles	Human Health Atmospheric Stability Analysis for Homeland Security Applications Stephen Lord NOAA/NCEP	Technological Monitoring Levees and Subsidence in the Sacramento-San Joaquin Delta using UAVSAR Cathleen Jones Jet Propulsion Laboratory California Department of Water Resources; US Geological Survey		

Real-time Global Monitoring Using Satellite Data (including TRMM Rainfall Estimations) and Hydrological Models and Landslide Algorithms

10 AUG 2009 1200 UTC

400 unaccounted for in Taiwan mudslide

PETER ENAV, The Associated Press, Monday, August 10, 2009; 3:32 PM TAIPEI, Taiwan -- A mudslide touched off by a deadly typhoon buried a remote mountain village, leaving at least 400 people unaccounted for Monday, and military rescue helicopters unable to land because of the slippery ground dropped food to desperate survivors

Bob Adler – U. Maryland, GSFC Pierce, Policelli, Hong, Yilmaz, Kirschbaum, Huffman

StormCenter: Communication and Collaboration Tool

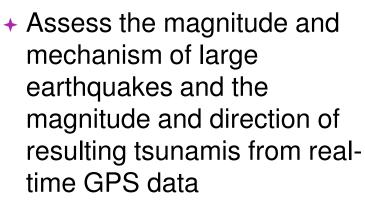
Enhance visualization and collaboration capabilities between NWS and FEMA Region VI while integrating NASA data into the decision making process

Collaboration Environment

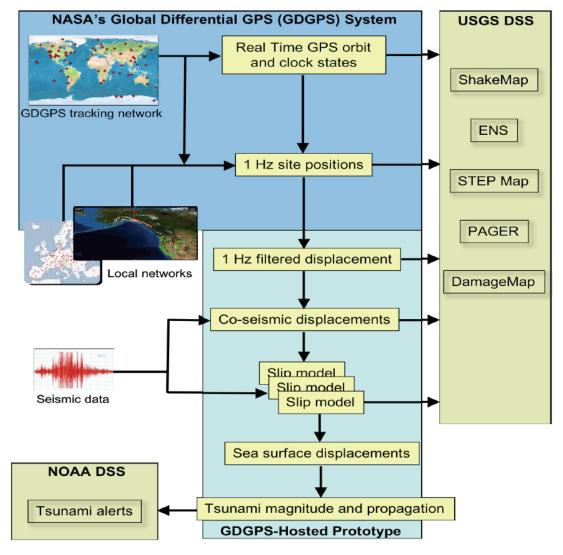
Dave Jones – StormCenter Communications

NASA Applied Sciences Program Natural Disasters Area

Levees and Water Resources



- Assess and determine changes in condition and integrity of levees
- + Support
 - Emergency response for levee failures
 - Delta Emergency Response Plan for major earthquakes
- Understand subsidence and aquifer discharge and recharge for water management



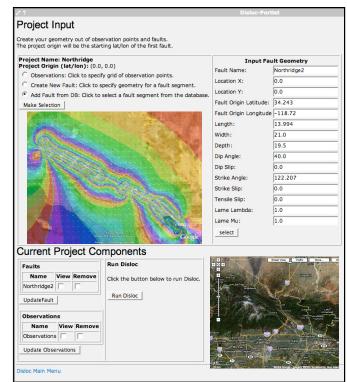
UAVSAR image of the Sacramento Delta; pixel resolution = 3m x 3m (Cathleen Jones)

GPS Real-Time Tsunami and Earthquake Alert System

- Improve tsunami warnings by NOAA's Pacific Tsunami Warning Center (PTWC)
- Enhance the USGS postearthquake damage assessment

Yoaz Bar-Sever - JPL

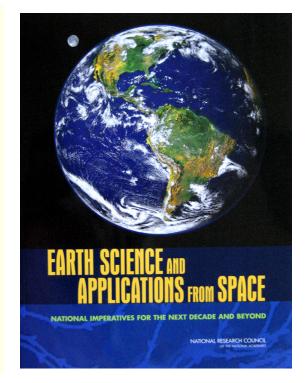
NASA Applied Sciences Program Natural Disasters Area


Earthquake Disaster Evaluation and Response

- Provide decision support for earthquake disaster management and response utilizing NASA remote sensing data and modeling software
- + Deliver rapid and readily accessible UAVSAR interferograms
- + Web infrastructure and map data products for decision-makers
- Developed in partnership with end users in first response and disaster management agencies
 - USGS
 - California Geological Survey
 - California Office of Emergency Services

Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER)

Maggi Glasscoe - JPL


Decadal Survey

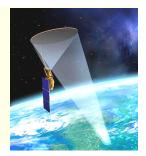
Earth Science and Applications from Space: A Community Assessment and Strategy for the Future

Goals

- Ensure practical benefits for humankind play equal role to that of acquiring new knowledge about Earth
 - Short-term needs
 - + Weather forecasts
 - + Warnings for protection of life and property
 - Longer-term scientific understanding necessary for future
- + Realize new applications that will benefit society

National Aeronautics and Space Administration (NASA) Office of Earth Science National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS) U.S. Geological Survey (USGS) Geography Division NASA Applied Sciences Program Natural Disasters Area

Tier 1 Decadal Survey Missions and Disasters

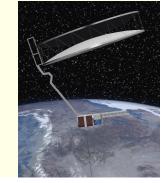

SMAP	DESDynI	CLARREO	ICESat-II
Landslide and Debris Flow	Human and Ecosystem Health	Winter Storm	Human and Ecosystem Health
Flood	Landslide and Debris Flow	Technological Disasters	Wildland Fire
Winter Storm	Earthquake		
Heatwave	Volcano		
Human and Ecosystem Health	Wildland Fire		
Wild land Fire	Drought		
Drought	Flood		Part of mission
Coastal Innundation	Coastal Inundation		Potential application
Hurricane	Technological Disasters		
	Hurricane]	
	Tsunami		

SMAP Soil Moisture Active and Passive

Objective: Soil moisture and freeze-thaw for weather and water cycle processes

Instrument: Active and passive microwave

Coastal Inundation	Drought	Flood	Heatwave	Human and Ecosystem Health	Hurricane	Landslide and Debris Flow	Winter Storm
Maps of coastal innundation	Early warning decision support	improved			Affected landfall area	Soil moisture is a key variable; better prediction through consistent observations in mountainou s regions	Operational severe weather forecasts


DESDynl

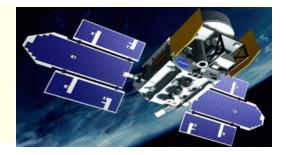
Deformation, Ecosystem Structure, and Dynamics of Ice

Objective: Surface and ice sheet deformation for understanding natural hazards and climate; vegetation structure for ecosystem health **Instrument:** SAR/InSAR and Lidar

Coastal Innun- dation	Drought	Earth- quake	Human and Ecosyste m Health	Hurricane	Landslide and Debris Flow	Tech- nological Disasters	Tsunami	Volcano	Wildland Fire
Maps of coastal innundation	Early warning decision support			affected landfall	Predict places and times; improved risk manage- ment	Mapping affected area		of magma; predict places and	loading; mapping of

CLARREO

Climate Absolute Radiance and Refractivity Observatory


Objective: Solar and Earth radiation; spectrally resolved forcing and response of the climate system **Instrument:** Radiance and Refractivity

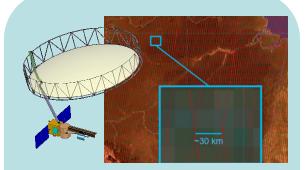
Technological Disasters	Winter Storm
Decision support for	Changes in storm
military and civilian	patterns associated with
communication	temperature patterns

ICESAT-II Ice, Cloud, and Land Elevation Satellite

Objective: Ice sheet height changes for climate change diagnosis **Instrument:** Lidar

Human and Ecosystem Health	Wildland Fire
Vegetation structure	Fuel loading
for ecosystem	
structure; predicting	
the effects of sea	
level change on	
growing populations	
and infrastructure	

Applications for Missions



- + Include the applications community early in the mission design process
- + Balance science, applications, and response objectives of the mission
 - Flow applications needs into the mission trades/design
 - Input to mission design early in the design process
- + What data products are useful for the applications community?
 - How quickly do they need to be disseminated?
- + Define roles of other agencies and how they fit into the missions
 - Particularly in non-overlapping regions with the existing targets
 - Responsibilities of other agencies to mission for meeting their needs

Workshops

- Objectives
- Needs
- Targets

Participation of end-users

- Mission design
- Operations

DESDynl Applications Workshop

- Over 50 participants in the workshop and five contributed posters from the broader community
 - Seemed appropriately sized
- + Attendees included representatives several agencies and centers
- + There was significant participation by first responders
- + No new instruments or modes were requested for the DESDynI mission
- Applications needs mainly impact
 - Duty-cycle
 - Downlink capacity
 - Data latency
 - Generation of high-level products
- + Future workshops (for all decadal survey missions)
 - □ More clearly define participants from the applications community
 - Agency co-sponsorship
 - Identify any additional commitments that may be needed to meet the applications goals

DESDynl Workshop Recommendations

- Establish an interagency working group to explore potential roles and responsibilities for Decadal Survey missions
 - □ For disasters SDR is the appropriate venue
- Decadal survey missions workshops
 - Engage disaster mitigation and response organizations
 - Vet workshop reports with the wide communities
- Allow for further iteration of potential observation needs, data/information products, and temporal and spatial sampling throughout the course of the mission concept development
- + Establish a capability for event response and recovery
 - Rapid downlink and dissemination of quick-look data products
- + Develop end user products for decision support
- + Establish an open data policy to enable broad usage
- + Enable international cooperation and collaborations

Applicable to other missions and disaster response

Developing Partnerships

- + Keep dialogue open
- Natural Disasters workshop early spring
 - Would benefit from SDR member participation
- Simulated exercises
 - ShakeOut
 - Develop others?
- + Incentivize partnerships with other agencies and organizations
 - Joint solicitations?
 - Required participation in NASA Applied Sciences calls
- + Engagement at the state level?
- + How do we flow capabilities from research (NASA) to operations (other agencies)?

- NASA as a research agency develops new instruments, analysis tools and other capabilities that can be applied to natural disasters
- Developing better flow of information would improve disaster response
 - Catalog capability, product, applicable disaster, point of contact on NASA and other agency side
- Need to develop improved mechanisms for transferring research tools to operational tools
- For the Decadal Survey Missions opportunities exist to express needs early in the mission design process
 - Need to understand additional needs and commitments for meeting those needs
 - Opportunity to maximize return from the missions