Weather & Climate Extremes in a Changing Climate: New Disaster Reduction Imperatives

Presented to the Subcommittee on Natural Disaster Reduction

Tom Karl, L.H.D

Director, NOAA's National Climatic Data Center Asheville, North Carolina

State of the Climate

Weather and Climate Extremes in a Changing Climate

1) Background

- A) Forcings
- B) Temperature
- C) Precipitation
- D) Sea level rise
- E) Sea Ice
- F) Greenland
- G) Snow cover Extent

2) North America Extremes (CCSP 3.3)

- A) Temperature
- B) Precipitation
- C) Drought
- D) Hurricanes
- E) Other Storms

3) Reducing Uncertainty

The NOAA Annual Greenhouse Gas Index (AGGI)

Calculated from the total direct radiative forcing normalized to 1990, the baseline year of the Kyoto Protocol (Source: D. Hoffman, NOAA/ESRL)

Subcommittee on Natural Disaster Reduction

Arctic Sea Ice Extent

Sea ice extent in March 2007 and September 2007

Surface melt duration departure from average for summer (Jun-Aug) 2007 from SSM/I; units are days.

The average is based on the summers from 1973-2000 (excluding 1975, 1977 and 1978).

Sea Level Rise

- Geographical patterns similar to upper ocean heat content change
 - Suggests that regional sea level changes are largely controlled by thermal processes
 - Additional trend is likely due to melting of grounded ice on Greenland and/or Antarctica
 Global Sea Level Changes from
- Trend is significantly higher than 20th century rate of 1.8 ±0.3 mm from tide gauge measurements over past 50-100 yrs
 - Is this part of a longer-term trend or just decadal variability?

North America

State of the Climate

Observed changes in North American extreme events, assessment of human influence for the observed changes, and likelihood that the changes will continue through the 21st century¹.

Phenomenon and direction of change	Where and when these changes occurred in past 50 years	Linkage of human activity to observed changes	Likelihood of continued future changes in this century
Warmer and fewer cold days and nights	Over most land areas, the last 10 years had lower numbers of severe cold snaps than any other 10-year period	Likely warmer extreme cold days and nights, and fewer frosts ²	Very likely⁴
Hotter and more frequent hot days and nights	Over most of North America	Likely for warmer nights ²	Very likely⁴
More frequent heat waves and warm spells	Over most land areas, most pronounced over northwestern two thirds of North America	Likely for certain aspects, e.g., night- time temperatures; & linkage to record high annual temperature ²	Very likely⁴
More frequent and intense heavy downpours and higher proportion of total rainfall in heavy precipitation events	Over many areas	Linked indirectly through increased water vapor, a critical factor for heavy precipitation events ³	Very likely⁴
Increases in area affected by drought	No overall average change for North America, but regional changes are evident	Likely, Southwest USA. ³ Evidence that 1930's & 1950's droughts were linked to natural patterns of sea surface temperature variability	Likely in Southwest U.S.A., parts of Mexico and Carribean ⁴
More intense hurricanes	Substantial increase in Atlantic since 1970; Likely increase in Atlantic since 1950s; increasing tendency in W. Pacific and decreasing tendency in E. Pacific (Mexico West Coast) since 1980 ⁵	Linked indirectly through increasing sea surface temperature, a critical factor for intense hurricanes ⁵ ; a confident assessment requires further study ³	Likely⁴

¹Based on frequently used family of IPCC emission scenarios ²Based on formal attribution studies and expert judgment

³Based on expert judgment

⁴Based on model projections and expert judgment ⁵As measured by the Power Dissipation Index (which combines storm intensity, duration and frequency)

TEMPERATURE EXTREMES

Observed Changes

- Since the record hot year of 1998, six of the last ten years (1998-2007) have had annual average temperatures that fall in the hottest 10% of all years on record for the U.S.
- Over recent decades ----
 - Most of North America is experiencing more unusually hot days and nights (since 1950 best coverage).
- The number of heat waves (extended periods of extremely hot weather) has been increasing...but,
 - Heat waves of the 1930s (*e.g.*, daytime temperatures) remain the most severe in the U.S. historical record.
- There have been fewer unusually cold days during the last few decades.
 - The last 10 years have seen fewer severe cold waves than for any other 10-year period in the historical record, which dates back to 1895.
 - There has been a decrease in frost days and a lengthening of the frost-free season.

TEMPERATURE EXTREMES

Attribution of Changes

Probability distribution functions (PDFs) of the globally averaged 2007 annual land surface temperature

State of the Climate

TEMPERATURE EXTREMES

Projected Changes

- Abnormally hot days and nights and heat waves are very likely to become more frequent.
- Cold days and cold nights are very likely to become much less frequent.
- The number of days with frost is very likely to decrease.
- Increase in the percent of days in a year over North America in which the daily low temperature is unusually warm (falling in the top 10% of annual daily lows).
- Sea ice extent is expected to continue to decrease increasing extreme episodes of coastal erosion in Arctic Alaska and Canada.

PRECIPITATION EXTREMES

- Heavy downpours have become more frequent and more intense in recent decades over most of North America and now account for a larger percentage of total precipitation.
 - Intense precipitation events (the heaviest 1%) in the continental U.S. increased by 20% over the past century while total precipitation increased by 7%.
- North American Monsoon
 - The season is beginning about 10 days later than usual in Mexico.
 - In the SW there are fewer rain events, but the events are more intense.

PRECIPITATION EXTREMES

The increase in precipitation intensity is consistent with the observed increases in atmospheric water vapor (linked to humaninduced increases in greenhouse gases).

Increase in the amount of daily precipitation over North America that falls in heavy events.

> Subcommittee on Natural Disaster Reduction Washington, DC July 2008

PRECIPITATION EXTREMES

- The lightest precipitation is projected to decrease.
- The heaviest precipitation is projected to increase strongly.
- Higher greenhouse gas emission scenarios produce larger changes in extreme precipitation.

Subcommittee on Natural Disaster Reduction

TEMPERATURE & PRECIPITATION Projected Changes

Hot days currently experienced once every 20 years would occur every other year or more by the end of the century

Daily total precipitation events that occur on average every 20 years would occur once every 4-6 years for NE North America

State of the Climate

Simulations for 2090-2099 indicating how currently rare extremes (1 in 20 year event) are projected to become more commonplace

Precipitation

pentad

Subcommittee on Natural Disaster Reduction Washington, DC July 2008

STORMS & HURRICANES Observed Changes

Atlantic Hurricanes/Tropical Storms (Adjusted for Estimated Missing Storms)

Atlantic hurricanes and tropical storms for 1878-2006, adjusted for missing storms.

Black curve is adjusted annual storm count,

Red curve is 5-year running mean, and

Blue curve is a normalized 5-year running mean SST index for Main Development Region

STORMS & HURRICAN Attribution of Changes

- It is very likely that the human induced increase in greenhouse gases has contributed to the increase in SSTs in the hurricane formation regions.
- There is a strong statistical connection between tropical Atlantic SSTs and Atlantic hurricane activity.
- This evidence suggests a substantial human contribution to recent hurricane activity.
- However, a confident assessment of human influence on hurricanes will require further studies with models and observations.

Sea surface temperatures (blue) and the Power Dissipation Index (green) for North Atlantic hurricanes

STORMS & HURRICAN Projected Changes

- It is likely that hurricane rainfall and wind speeds will increase in response to human-caused warming.
- For each 1°C increase in tropical sea surface temperatures, core rainfall rates will increase by 6-18%.
- Surface wind speeds of the strongest hurricanes will increase by about 1-8%.

DROUGHT

Projected Changes

Percent change in Annual Runoff (2090-2099)

Washington, DC July 2008

DROUGHT

Projected Changes

Model Projected Changes (2080-2099) in Precipitation (Average and regions of model agreement A2 scenario)

Annual

Masked Annual

Projected Changes

DROUGH

Model Projected Changes (2080-2099) in Precipitation (Average and regions of model agreement A2 scenario)

OTHER STORMS

Observed Changes

Snowstorms

- Over the 20th century, there has been considerable decade-to-decade variability in the frequency of snow storms (6 inches or more) and ice storms.
- There has been a northward shift in snow storm occurrence, and this shift, combined with higher temperature, is consistent with a decrease in snow cover extent over the U.S.
- In northern Canada, there has also been an observed increase in heavy snow over the same time period.
- Changes in heavy snow events in southern Canada are dominated by decade to decade variability.

Local Severe Weather

 The data used to examine changes in the frequency and severity of tornadoes and severe thunderstorms are inadequate to make definitive statements about actual changes.

OTHER STORMS

Observed Changes

Changes from average (1959-1997) in the number of winter storms each year in the Northern Hemisphere for high and mid-latitudes, and the change from average of winter storm intensity in the Northern Hemisphere each year for high and mid-latitudes.

DTHER STORMS

Observed Changes

Time series of the number of strong cyclones (< 992mb) across the Great Lakes region over the period 1900-1990.

DTHER STORMS

Projected Changes

PATHWAYS FORWARD

Source: Unified Synthesis Product (First Draft, July '08)

Subcommittee on Natural Disaster Reduction Washington, DC
July 2008

PHYSICAL CLIMATE

Assuring continued capability for documenting climate system evolution

Essential climate variables are not being adequately monitored. How can we do a better job of detecting changes in essential climate variables?

Determine best models

There are now well over a dozen climate models. What models are best for what purpose? Can more reliance be placed on some models?

Improve regional projections

Climate change information particularly important for local and regional decision making. How can we provide local-scale climate change information to decision makers?

Understand how the climate system responds to change

Earth system feedbacks to global climate change are not generally modeled. What potentially important effects are they ignoring?

Expand emission scenarios

Global carbon emissions now exceed the highest IPCC emission scenarios of future change. What can be done to better inform policy?

Monitor and project extreme events

Extreme events have tremendous impacts, yet many kinds of events are not being accurately observed and adequately projected. How can this be addressed?

IMPACTS

Calculate thresholds

Crossing certain thresholds can lead to dramatic effects. Are there other thresholds we should be watching for?

Understand multiple stresses

Multiple stresses are common in society and the environment. And so we need to be prepared to deal with multiple stresses. Is climate change likely to produce other complex stresses that we should know about? Community Resilience Indicators?

Quantify natural benefits

Nature provides us with many benefits such as food, fuel and fiber as well as many services we take for granted such as the cleansing of air and water. Are there benefits that we depend upon that are in jeopardy?

Assess impacts on human health and well being

Climate change is going to impact many aspects of human health and well being. Are these impacts being adequately measured and projected so we can take action before a problem gets too serious?

Determine reversibility of impacts

Some aspects of climate change appear to be irreversible. Are the irreversible impacts being monitored adequately so that we can take precautions?

ADAPTATION

Incorporate climate change in planning

We didn't pay much attention to climate change in the past and our country developed just fine. Why do we need to pay so much attention to it now?

Better understanding of evolving nature of adaptation

Climate is no longer constant. It will now continuously evolve so adaptation must also be dynamic. How can this adaptation be most effective?

Community Resilience Indicators?

Determine unintended consequences

We've seen food prices sky rocket around the world while more corn is being turned into fuel forcing corn growth for food onto more marginal land. This consequence was not widely discussed when ethanol policy was being debated. Are there other unintended consequences awaiting us?

Estimating costs and benefits of adaptation actions

The Unified Synthesis Product outlines a number of adaptation strategies to help society cope with climate change in the context of other stresses. Do we have adequate methods to carry out costbenefit analyses for such adaptation strategies?

Questions?

