



# Update on the Great Tohoku Earthquake

David Applegate U.S. Geological Survey April 7, 2011

U.S. Department of the Interior U.S. Geological Survey

### Giant earthquakes ring the Earth like a bell



## Shaking duration in Tokyo



### Japanese early warning systems

Issued at 14:49 JST, 11 March 2011



Automatic earthquake warning triggered by computer

Notes

ehrp

**≥USGS** 

#### Japan Meteorological Agency initial tsunami warning

All rights reserved. Copyright @ Japan Meteorological Agency

**Tsunami Advisory** 

Epicenter

Tsunami height is estimated to be about 0.5 meter

Tsunami Tsunami ho to be up to

Tsunami Warning

Tsunami

Major

Tsunami height is estimated to be up to 2 meters

Tsunami height is estimated

to be 3 meters or more

## Red Alert PAGER for the Tohoku earthquake issued in 42 minutes

≊USGS

nehrp



| ESTIMATED POPULATION<br>EXPOSURE (k = x1000)<br>ESTIMATED MODIFIED<br>MERCALLI INTENSITY<br>PERCEIVED SHAKING |                          | *             | II-III<br>Weak | IV<br>Light | V<br>Moderate | 2,472k*<br>VI<br>Strong | 7,985k*        | 2,598k<br>VIII<br>Severe | 0<br>IX<br>Violent | 0<br>X+  |
|---------------------------------------------------------------------------------------------------------------|--------------------------|---------------|----------------|-------------|---------------|-------------------------|----------------|--------------------------|--------------------|----------|
|                                                                                                               |                          | I<br>Not felt |                |             |               |                         | VII            |                          |                    |          |
|                                                                                                               |                          |               |                |             |               |                         | Very Strong    |                          |                    | Extreme  |
| POTENTIAL                                                                                                     | Resistant<br>Structures  | none          | none           | none        | V. Light      | Light                   | Moderate       | Moderate/Heavy           | Heavy              | V. Heavy |
| DAMAGE                                                                                                        | Vulnerable<br>Structures | none          | none           | none        | Light         | Moderate                | Moderate/Heavy | Heavy                    | V. Heavy           | V. Heavy |

#### Population Exposure



PAGER content is automatically generated, and only considers losses due to structural damage. Limitations of input data, shaking estimates, and loss models imay add uncertainty. http://earthquake.uscg.gov/coger

population per ~1 sq. km from Landscan Structures:

Overall, the population in this region resides in structures that are resistant to earthquake shaking, though some vulnerable structures exist. The pradominant vulnerable building types are non-ductile reinforced concrete frame and heavy wood frame construction.

#### Historical Earthquakes (with MMI levels):

| Date<br>(UTC) | Dist.<br>(km) | Mag. | Max<br>MMI(#) | Shaking<br>Deaths |  |  |
|---------------|---------------|------|---------------|-------------------|--|--|
| 1998-06-14    | 363           | 5.7  | VII(428k)     | 0                 |  |  |
| 1994-12-28    | 263           | 7.7  | VII(132k)     | 3                 |  |  |
| 1983-05-26    | 369           | 7.7  | VII(174k)     | 104               |  |  |

Recent earthquakes in this area have caused secondary hazards such as teunamis, landslides, and fires that might have contributed to losses.

#### Selected City Exposure

| MMI City                 | Population |
|--------------------------|------------|
| VIII Ishinomaki          | 1178       |
| VIII Shiogama            | 60         |
| VIII Yamoto              | 328        |
| VIII Kogota              | 204        |
| VIII Rifu                | 354        |
| VIII Furukawa            | 761        |
| VIII Yamagata            | 2558       |
| VII Morioka              | 295k       |
| VII Sendai               | 1,0388     |
| VII Fukushima            | 294k       |
| VII Utsunomiya           | 450k       |
| old cities appear on map | ik = x1000 |

Event ID: usc0001xgp

## GoogleEarth feed from USGS showing fault rupture plane (blue rectangle), modeled shaking intensity and aftershocks



#### GPS Displacements from Geospatial Information Authority of Japan



#### All aftershocks of Tohoku earthquake



#### Aftershock Map Tohoku Earthquake



Showing 806 earthquakes

### Magnitude-6+ aftershocks

| science for a changing | USGS Home<br>Contact USGS<br>Search USGS |       |      |          |            |   |          |
|------------------------|------------------------------------------|-------|------|----------|------------|---|----------|
| Earthquake H           | azards Program                           | 1     | Home | About Us | Contact Us | Q | Search   |
| EARTHQUAKES HAZARDS    |                                          | LEARN | PRE  | PARE     | MONITORING |   | RESEARCH |

#### Aftershock Map Tohoku Earthquake



## International Charter for disaster response

Volunteers from USGS, GISCorps, ImageCat, **Rochester Institute of** Technology, Penn State, Harvard, George Mason, and the USAID Office of **Foreign Disaster** Assistance responded to request from the Japan Aerospace Exploration Agency for imagery analysis.

#### **≥USGS**

http://www.disasterscharter.org/

Japan Tsunami Affected Areas: Onagawamachi, Miyagi Pref.





Event todowallow On March 11, 2511 a Textmen destroyed several class along the costs of Japan These images shin the city of Dragesemuch lative and after the Textmen.

Data Baurtee Pointseatur Taosen affected ansa schedeol from Westelaen 1, penthromatik progeny (50 on at natio) Ansaisso deer Mexim h1, 3011

Plat Dealer Tsuram affected area screded from Worksen's perchannels integer (30 cm at rank) Acquestion tale, March 14, 2011.

Mitp Projection: Geographic, Statum WOE B4.

May produced on Manch 19, 2011 by Clerk Labe, Clerk University mine clarificities org clarificities@clerks.exts







# Effect on Mines and Mineral Processing Facilities in Northern Honshu, Japan

- Up to one-quarter of the world's iodine and one-third of Japan's cement production may be affected.
- Effects may come from direct damage and the damage done to the surrounding infrastructure, including electricity and transportation.
- Japan is the world's second leading iodine producer, after Chile. The eight affected refineries alone have the capacity to produce 25 percent of the world's iodine. Iodine is used primarily in LCD's.
- In addition to iodine, Japan is a leading source of titanium metal, and its facilities in the affected area have the ability to produce 10 percent of the world's titanium metal.
  USGS



#### http://pubs.usgs.gov/of/2011/1069/

## The mandate of the National Earthquake Hazard Reduction Program

- Develop effective measures for earthquake loss reduction;
- Promote their adoption;

ehrp

 Improve the understanding of earthquakes and their effects on communities, buildings, structures, and lifelines.





National Institute of Standards and Technology





national earthquake hazards reduction program

### US subduction zones capable of magnitude-9 earthquakes

-- Earthquake Planning Scenario --Rapid Instrumental Intensity Map for 1964 Scenario Scenario Date: MAR 27 1964 05:36:14 PM AKDT M 9.2 N61.00 W147.80 Depth: 25.0km



| PERCEIVED                 | Notfelt | Weak    | Light   | Moderate   | Stiong | Very strong | Severe         | Violent | Extreme    |
|---------------------------|---------|---------|---------|------------|--------|-------------|----------------|---------|------------|
| POTENTIAL<br>DAMAGE       | none    | none    | none    | Very light | Light  | Moderate    | Moderate/Heavy | Неалу   | Very Heavy |
| PEAK ACC (%g)             | <.17    | .17-1.4 | 1.4-3.9 | 3.9-9.2    | 9.2-18 | 18-34       | 34-65          | 65-124  | >124       |
| PEAK VEL.(om/s)           | <0.1    | 0.1-1.1 | 1.1-3.4 | 3.4-8.1    | 8.1-16 | 16-31       | 31-60          | 60-116  | >116       |
| INSTRUMENTAL<br>INTENSITY | L       | 11-111  | IV      | V          | VI     | VII         | VIII           | ×       | Xe         |

nehrp

#### ≥USGS \_/



| PERCEIVED           | Notfelt | Weak    | Light   | Moderate   | Strong | Very strong | Severe         | Violent | Extreme    |
|---------------------|---------|---------|---------|------------|--------|-------------|----------------|---------|------------|
| POTENTIAL<br>DAMAGE | none    | none    | none    | Very light | Light  | Moderate    | Moderate/Heavy | Heavy   | Very Heavy |
| PEAK ACC (%g)       | <.17    | .17-1.4 | 1.4-3.9 | 3.9-9.2    | 9.2-18 | 18-34       | 34-65          | 65-124  | >124       |
| PEAK VEL (cm/s)     | <0.1    | 0.1-1.1 | 1.1-3.4 | 3.4-8.1    | 8.1-16 | 16-31       | 31-60          | 60-116  | >116       |
| INSTRUMENTAL        | E       | 11-111  | IV      | V          | VI     | VII         | VIII           | DX      | Xr         |

#### Earthquakes are a national hazard





nehrp

★ Notable earthquakes in past decade

# The heart of NEHRP: Translating USGS national hazard maps into model building codes



nehrp

≊USGS



#### NEHRP Recommended Seismic Provisions for New Buildings and Other Structures

FEMA P-750 / 2009 Edition

🐮 FEMA



INTERNATIONAL BUILDING CODE<sup>®</sup>



2012

Seismic element of NEHRP Provisions and Int'l Building Code based on the USGS national seismic hazard map



# Earthquake early warning – getting ahead of strong ground shaking

- USGS/CISN Phase I (2007-2009) cooperative agreement supported algorithm testing
- Phase II (2010-2012) supports prototype development and identifies test users
- ARRA funding used to reduce datalogger delays
- EEW requirements:

≈USGS

- -- rapid earthquake detection
- -- early magnitude estimation
- -- ground shaking prediction
- -- robust monitoring networks
- -- well-defined user community

nehrp



# For tsunamis, seismic is the start



Satellite

All Hazard Alert Broadcast system installed at Ocean Shores, Washington.

#### The beach is the finish