The 2010 Haiti Earthquake: Lessons Learned, Challenges and Opportunities for a Resilient, Sustainable Haiti

Reginald DesRoches, PhD
Professor and Associate Chair
School of Civil & Environmental Engineering
Georgia Institute of Technology
One billion people in developing countries are vulnerable to disasters because they live in congested and poorly built houses without emergency services…… Fewer people die from cyclones, floods and earthquakes in countries with planned housing, infrastructure and emergency teams, but lack of financial capacity in developing countries, worsens the impact of disasters.

Red Cross, 2010
One billion people in developing countries are vulnerable to disasters because they live in congested and poorly built houses without emergency services…… Fewer people die from cyclones, floods and earthquakes in countries with planned housing, infrastructure and emergency teams, but lack of financial capacity in developing countries, worsens the impact of disasters.

Red Cross, 2010
Questioning the Disaster

• Why do the number of casualties in Haiti far exceed the “norm”.
• What are the conditions that led to the disaster in Haiti?
• Where are the future disasters likely to occur?
• What can/should the international community do to reduce the impact of future hazards in Haiti and other countries?
Overview of Haiti

- 10,000 Square miles
- 1st Free Black Nation, 2nd Independent Country in West.
- Population of 10 million
  - PaP approx 3-4 million
- Poorest country in Western Hemisphere
  - $9 Billion GDP, $790 per year
- Illiteracy rate of 50-70%
- 50% of population less than 18 years old
Context – an ongoing crisis (1)
Haiti has one of highest exposure to hazards in the world

- 96% of the population is exposed to 1 or more hazards
- Two active seismic fault lines
- Highest index of vulnerability to cyclones of the island states in the region
- One the three most vulnerable countries to climate change impacts
Hurricane Tomas
Context – an ongoing crisis (2)

• **Extreme vulnerability**
  • High environmental degradation, housing and infrastructure in flood prone areas
  • High level of poverty
    • Most people live on less than $2 per day
    • Largest income inequity in hemisphere
• **Limited public infrastructure**
  • Poor road network (less than 500 miles of paved road)
  • <10% access to clean water
  • <12.5% access to electricity
• **Governance challenges**
  • Weak government
    • 92% of services provided by NGOs
  • Limited technical capability
• **Chronic financial deficit**
  • Only country to have long term decline of GDP
Environmental Degradation in Haiti
Environmental Degradation in Haiti

Direct Impacts
• Landslides, Slope Stability
• Flooding

Indirect Impacts
• Erosion affects water quality
• Erosion affects crop yields
Seismicity in the Caribbean
2010 Haiti Earthquake

- Mw 7.0 EQ, 4:53 PM, Depth = 8.1 miles
- Epicenter ~ 15 miles from P-a-P
- Population Affected ~ 3-4 Million

Rupture
- 10 seconds long
- East to West
- 30 KM long
2010 Haiti Earthquake

- 250,000-300,000 dead
  - Largest in History (per capita)—5x more than the 2\textsuperscript{nd} deadliest EQ (1972 Nicaragua)
- 13 out of 15 Gov’t buildings collapsed
- 45% of police stations collapsed (60 % of prisoners escaped)
- 5000+ schools collapsed (41,000 casualties)
- 87% of Universities Collapsed
- 250,000 homes collapsed
- 30,000 commercial buildings collapsed
- 300,000 injured
- 1-1.6 Million Homeless
- Estimated Cost of $14 Billion
  - Largest Cost for Natural Disaster in History (as function of GDP)
Trip 1: EESU/UN MISSION

• Team of 10 Structural/Architectural Engineers
• Provide preliminary structural assessment for remaining standing critical buildings in Port-au-Prince
• Used ATC Tagging System (RED, YELLOW, GREEN)
• Inform responsible parties of recommendations regarding building occupancy
• Report findings to UNDP (United Nations Development Prog) coordinator and provide supporting documentation
Our Home for 7 Days
Trip1 : Rapid Building Assessment Team

• Hospitals/Medical Facilities: 34
• UN Office
• Buildings/Residences: 35
• Other private dwellings: 14
• Schools/Colleges: 7
• Warehouses: 6
• Commercial buildings: 5
• Orphanages: 2
• Government Buildings: 3
• Others: 6
• Total: 120

≈25% Red (unsafe), 25% Yellow (limited entry), ≈50% Green (safe)
Ministry of Justice Courthouse

- Complete collapse of 3 story building
- 7 workers from courthouse still missing
- Minister of Justice needed to obtain critical documents
- Assessed the structural integrity of basement entry and cleared for rapid retrieval of critical documents
Trip 2: ASCE/EERI Earthquake Reconnaissance

• March 6-13
• Team of 28 structural engineers, city planners, architects, geographers, emergency responders.
• Goal: Document damage, collect data, and meet with local officials and engineers.
• Make recommendations on rebuilding

• Visited over 500 facilities
• Office buildings, homes, government buildings, historical structures, industrial buildings, ports, telecommunications, water, power, and hospitals
• PaP, Leogane, Petit Goave, Jacmel, St. Marc
Government Buildings
Rubble/solid brick bearing wall with wood floor + slab framing

Ministry of Agriculture
Government Buildings

Ministry of Agriculture
Government Buildings

Presidential Palace
Damage to Schools

Most were RC MRF with hollow CMU infills

St. Louie de Gonzague School
Damage to Schools

Damage to Columns

St. Louie de Gonzague School
Downtown PaP
Collapsed Apartment Bldg
Overcrowding in Haiti
Low-rise and Residential

Most common: Concrete frame, concrete block infill or confined masonry.
Low-rise residential

RC Frames w/ Masonry Infill
- RC Frame construction is completed first and masonry walls are built later. Confining elements are not designed to act as a moment-resisting frame; infill walls NOT load bearing

Confined Masonry
- Masonry walls are constructed first; subsequently, RC tie-columns are cast in place next. Finally, RC tie-beams are constructed on top of the walls, simultaneously with the floor/roof slab construction
Residential Timber Construction

- All-wood buildings are very light and flexible.
- 10% require demolition, 75% moderate-major repair and/or retrofit, 15% minor repair
Common Vulnerabilities

• Inadequate structural systems
  – Soft stories
  – Lack of symmetry

• Quality of Construction
  – Lack of trained/skilled labor
  – Lack of Heavy machinery

• Quality of Materials
  – Quality of cement, sand, water
  – Smooth steel bars

• Lack of Details
  – Insufficient longitudinal reinforcement
  – Lack of transverse reinforcement
Success Story - Digicel Tower

- Digicel is largest cellular phone company in Haiti.
- 12 story concrete framed, curtain wall tower with two adjacent concrete block infill buildings and a space frame tower.
- Designed according to ACI 318
- Tower performed well while adjacent buildings were heavily damaged
Critical Issues and Challenges to Recovery in Haiti
Lack of Clear Rebuilding Plan

• Too broad
• No sense of how to implement plan
• No support for plan
Need to Build Capacity in GoH
Debris Removal & Management

• 20 million cubic meters remaining
Multi-Hazards
Concerns Over Topology
Land tenure issues
Land Scarcity in PaP
Health and Security

- Cholera outbreak
- Security in camps
- Kidnappings
- Security following elections
Donors need to speak w/ One Voice
Observations

• The social, economic, and environmental conditions in Haiti before the EQ created an extreme vulnerability to natural hazards.

• The grand challenge is how we can design these communities so that they more resilient, more sustainable, and more socially just.

• Population growth and rapid urbanization in hazardous areas, coupled with the impacts of climate will result in more frequent and extreme disasters unless proactive steps are taken.
Graph R. Bilham
Concluding Remarks (1)

• Risk reduction must become a priority in Haiti and needs to be linked with poverty reduction and sustainable development.
  – Public and private sector
  – Must be part of education system
  – Must build capacity at every level
  – Community and individual participation is key
Concluding Remarks (2)

• We need to use latest technologies and science-based evidence to identify, assess, and reduce risks
  – Multi-hazard risk maps
  – Community-based risk maps
  – Knowing HOW to build and WHERE to build
  – Focus on critical infrastructure (schools, hospitals, etc)
  – Use local materials
  – Using local technologies (Haiti-cell phones)
  – Working with local media
Working w/ Local Media
Concluding Remarks (3)

• Being prepared will save lives and reduce the impact from future events
  – Evacuation drills
  – Education at all levels
  – Coordination between NGOs, GoH, and Communities
  – Documenting lessons learned
Acknowledgements

• Financial support from NSF, EERI, USGS, ASCE, NEES, MAE for reconnaissance
• Government leaders in Haiti
• University Professors in Haiti
• People of Haiti