Disaster Risk Reduction, Resilience, and Sustainability: The Path Forward

Susan L. Cutter
University of South Carolina
scutter@sc.edu

SDR Briefing
January 6, 2011
Washington D. C.
Organizing Schema

Disaster Risk Reduction → Resilience → Sustainability

Ecological Infrastructure
Economic Organization
Social & Behavioral Community
Organizing Principles

1. DRR is the practice of lessening disaster risks through systematic efforts to reduce exposures, lessen vulnerability of people and structures, wise land and environmental management, and improved preparedness (UNISDR 2009).

2. Resilience is both a process and an outcome. The process is to build local capacity to withstand adverse impacts before, during, and after the event. The outcome is the restoration of basic functioning of the systems.

3. Achieving sustainability will entail responsiveness to current conditions and constraints, but also the ability to adapt to uncertain and changing conditions.

4. Managing disaster risks entails a systematic process of multi-scale, multi-actor, and multi-institutional strategies and policies to enhance resilience. Such management recognizes the continuum on initiating events ranging from sudden onset events to longer term slow onset ones.

5. Adaptation to climate change is part of disaster risk management and if DRM strategies enhance resilience in the short term; they will also facilitate climate adaptation in the longer term, thus insuring a sustainable future.
Paths Toward Sustainability

1. Make progress towards the Grand Challenges

- 1. Provide hazard and disaster information where and when it is needed.

+ 2. Understand natural processes that produce hazards

- 3. Develop hazard mitigation strategies and technologies

- 4. Reduce vulnerability of interdependent critical infrastructure

- 5. Assess disaster resilience

- 6. Promote risk wise behavior
Needs and Opportunities

Systematic inventory on losses (where, how much, causal agent)

- county-level natural hazard dataset
- 18 different natural hazard events types: avalanches, coastal hazards, droughts, earthquakes, floods, fog, hail, heat, hurricanes incl. tropical storms, landslides, lightning, severe storms, tornados, tsunamis & seiches, volcanic eruptions, wildfires, wind events, winter weather
- Version 8.0: 1960 through 2009
- about 650,000 records
- SHELDUS does not include Puerto Rico, Guam, or other U.S. territories.

www.sheldus.org

Systematic and long-term data on the nature and dynamics of social systems and their built environment for predictive understanding of DRR

RAVON’s Research Agenda:

- Conceptual clarification
- Monitoring
- Modeling, evaluation
- Data sharing/dissemination
- Post-event research
Consistent and comparable locally-based hazard vulnerability assessments

Measuring and mapping social vulnerability

sovius.org
Integrating social vulnerability with hazard exposure

Downscaling to sub-county scales

http://mapra.cas.sc.edu/ihat/index.html
Downscaling to sub-county scales

Frequency of Events

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Events</th>
<th>Years In Record</th>
<th>ReturnPeriod</th>
<th>Annual % Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalanche</td>
<td>0</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drought</td>
<td>1</td>
<td>59</td>
<td>59.00</td>
<td>1.69</td>
</tr>
<tr>
<td>Earthquake</td>
<td>18</td>
<td>310</td>
<td>17.22</td>
<td>5.80</td>
</tr>
<tr>
<td>Fire - wildfire hazard only</td>
<td>1089</td>
<td>21</td>
<td>0.61</td>
<td>8001.90</td>
</tr>
<tr>
<td>Flood</td>
<td>23</td>
<td>99</td>
<td>2.90</td>
<td>36.98</td>
</tr>
<tr>
<td>Fog</td>
<td>0</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funnel Cloud</td>
<td>2</td>
<td>10</td>
<td>8.00</td>
<td>12.50</td>
</tr>
<tr>
<td>Hall</td>
<td>147</td>
<td>59</td>
<td>0.40</td>
<td>249.15</td>
</tr>
<tr>
<td>Hazardous materials (hazard)</td>
<td>328</td>
<td>22</td>
<td>0.06</td>
<td>1490.90</td>
</tr>
<tr>
<td>Hurricane/Tropical Storm</td>
<td>17</td>
<td>158</td>
<td>9.29</td>
<td>10.75</td>
</tr>
<tr>
<td>Landslide</td>
<td>1</td>
<td>49</td>
<td>49.00</td>
<td>2.04</td>
</tr>
<tr>
<td>Lightning</td>
<td>10</td>
<td>15</td>
<td>1.60</td>
<td>62.50</td>
</tr>
<tr>
<td>Lightning & High Winds</td>
<td>269</td>
<td>59</td>
<td>0.21</td>
<td>455.93</td>
</tr>
<tr>
<td>Nuclear Power Plants</td>
<td>34</td>
<td>59</td>
<td>1.73</td>
<td>57.02</td>
</tr>
<tr>
<td>Ocean Air Surf</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>1</td>
<td>15</td>
<td>15.00</td>
<td>6.66</td>
</tr>
<tr>
<td>Severe Winter Storm</td>
<td>7</td>
<td>59</td>
<td>8.42</td>
<td>11.86</td>
</tr>
<tr>
<td>Temperature Extremes</td>
<td>1</td>
<td>15</td>
<td>16.00</td>
<td>0.25</td>
</tr>
<tr>
<td>Terrorism</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation - motor vehicle</td>
<td>941200</td>
<td>10</td>
<td>0.60</td>
<td>941200.00</td>
</tr>
</tbody>
</table>

Associated Losses

Hazard

- Coastal: $118, $12, 0.000, 0.000
- Drought: $165,000, $115,250, 0.010, 0.000
- Flooding: $13,480, $13,622, 0.000, 0.020
- Heat: $5,890, $4,510, 0.000, 0.032
- Hurricane/Tropical Storm: $192,611, $172,722, 0.020, 0.000
- Landslide: $0, $0, 0.140, 0.000
- Lightning: $80,737, $2,765, 0.080, 0.975
- Severe Storm/Thunder Storm: $126,709, $14,796, 0.070, 0.226
- Tornado: $322,739, $34, 0.020, 0.340
- Wildfire: $1,952, $4,792, 0.000, 0.001
- Wind: $138,464, $3,782, 0.021, 0.201
- Winter Weather: $36,629, $296,977, 0.125, 0.024

Additional information regarding SHELUS data is available from the website.
Evidence-based indicators to measure progress toward DRR and resilience

A) Social
B) Economic
C) Institutional
D) Infrastructure
E) Community Capital

2. Develop a science action plan consistent with international efforts

Integrated Research on Disaster Risk

Key components—focus on risk and disaster risk reduction; need an integrated approach across hazards, disciplines, scales; recognize importance of data and information

Broad research objectives:
1. Characterization of hazards, vulnerability, and risk
2. Understanding decision making in complex and changing risk contexts
3. Reducing risks and curbing losses through knowledge-based actions
4. Cross cutting themes—case studies; assessment, data management and monitoring; capacity building

Partners: National and international science institutions; national and international development assistance agencies; National IRDR Committees
Some Specifics

National IRDR Committees

Establish US National Committee for IRDR consistent with other countries

Members:
SDR (US Federal Agencies)
Disasters Roundtable
Major Multidisciplinary Disaster Research Centers:
- Natural Hazards Center, Boulder
- Disaster Research Center, Delaware
- Hazards & Vulnerability Research Institute, South Carolina
- Hazard Reduction & Recovery Center, Texas A&M
- Others...

IRDR Initial Projects

FORIN—IRDR forensic investigations
RIA—Risk interpretation and action
DATA—long-term databases
GAIRDR—Global assessment of integrated research on disaster risk
3. Awareness of Upcoming Reports

IPCC Special Report (SREX)

Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation

Timeline:
April 2011 Government and expert review comments (2nd draft)
May 2011 Final drafts prepared
Oct 2011 SREX Final Government Distribution
Nov 2011 Joint WG1/WG2 session to approve SREX Summary for Policy Makers and underlying report
SREX Contents

Chapter 1:
Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience

Chapter 2:
Determinants of risks: exposure and vulnerability

Chapter 3:
Changes in climate extremes and their impacts on the natural physical environment

Chapter 4:
Changes in impacts of climate extremes: human systems and ecosystems

Chapter 5:
Managing the risks from climate extremes at the local level

Chapter 6:
Managing the risks from climate extremes at the national level

Chapter 7:
Managing the risks: international level and integration across scales

Chapter 8:
Toward a sustainable and resilient future

Chapter 9:
Case studies

The National Academies, Committee on Science, Engineering, and Public Policy (COSEPUP)

Increasing National Resilience to Hazards and Disasters

Study statement of task

An ad hoc committee overseen through collaborative oversight of the Disasters Roundtable (DR) and the Committee on Science, Engineering, and Public Policy (COSEPUP) will conduct a study and issue a consensus report that integrates information from the natural, physical, technical, economic, and social sciences to identify ways in which to increase national resilience to hazards and disasters in the United States. In this context, “national resilience” includes resilience at federal, state and local community levels.

The ad-hoc committee will:

- Define “national resilience” and frame the primary issues related to increasing national resilience to hazards and disasters in the United States;

- Provide goals, baseline conditions, or performance metrics for resilience at the U.S. national level;

- Describe the state of knowledge about resilience to hazards and disasters in the United States;

- Outline additional information or data and gaps and obstacles to action that need to be addressed in order to increase resilience to hazards and disasters in the United States;

- Present conclusions and recommendations about what approaches are needed to elevate national resilience to hazards and disasters in the United States.
Members

Susan L. Cutter, chair, University of South Carolina, Columbia, SC
Joseph A. “Bud” Ahearn, CH2M Hill Ltd, Denver, CO
Bernard Amadei, University of Colorado at Boulder, CO
Patrick Crawford, Feeding America, Chicago, IL
Gerald E. Galloway, University of Maryland, College Park, MD
Michael F. Goodchild, University of California, Santa Barbara, CA
Howard C. Kunreuther, University of Pennsylvania, Philadelphia, PA
Meredith Li-Vollmer, Public Health Seattle & King County, Washington
Monica Schoch-Spana, University of Pittsburgh Medical Center, Baltimore, MD
Susan Scrimshaw, The Sage Colleges, Troy, NY
Ellis M. Stanley, Sr., Dewberry, Los Angeles, CA
Gene Whitney, Congressional Research Service, Washington, DC
Mary Lou Zoback, Risk Management Solutions, Newark, CA

Study Sponsors
(as of September 2010)

Department of Agriculture/Forest Service
Department of Energy
Department of Homeland Security
DHS/Federal Emergency Management Agency
Department of the Interior/U.S. Geological Survey
National Aeronautics and Space Administration
National Oceanic and Atmospheric Administration
U.S. Army Corps of Engineers
Community and Regional Resilience Institute (CARRI)
General Study Timeline

- January – May 2011: 2-3 committee meetings offsite
 - New Orleans-Biloxi (January)
 - Cedar Rapids-Iowa City (March)
 - Irvine (May)

- May – June 2011: Mid-term commissioned report to sponsors and public (written by rapporteur to capture content from one or more committee meetings)

- August – September 2011: Final committee meeting (final writing meeting)

- October 2011 – January 2012: Committee report to review and response to review

- February 2012: Delivery of pre-publication report to sponsors and public release

- February 2012 and beyond: Report dissemination, derivative products

To provide actionable recommendations and guidance on the best approaches to take to reduce human losses from hazards and disasters by increasing national resilience at the local community, state, and federal levels.
Questions???

scutter@sc.edu

http://webra.cas.sc.edu/hvri/