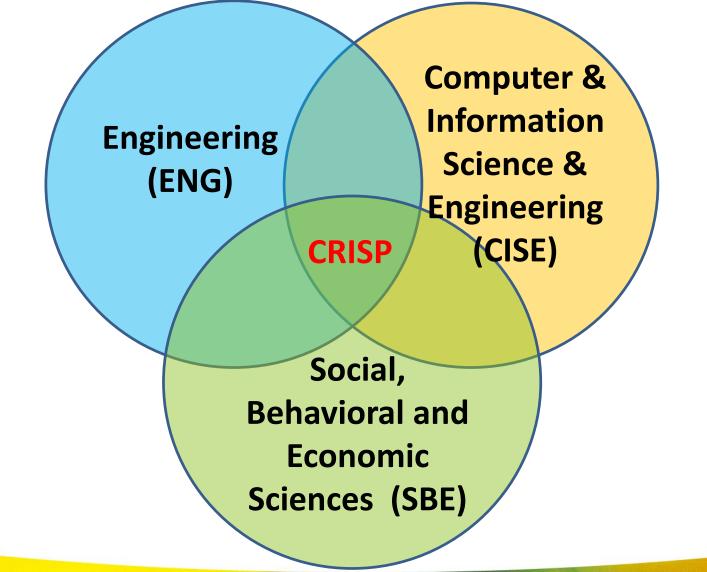
Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) at the National Science Foundation (NSF) Directorates for: (1) Computer & Information Systems & Engineering;


(2) Engineering; (3) Social, Behavioral & Economic Sciences

Solicitation: NSF 15-531

Subcommittee on Disaster Reduction White House Conference Center Washington, D.C., USA April 2, 2015

Participating Directorates

Background

- March 20, 2015 Upcoming proposal deadline
- Anticipated Funding Amount: \$20 million
 - Type 1 Awards: Projects will be of 3 years in duration with a maximum total budget of \$500,000
 - Type 2 Awards: Projects will be of 3-4 years in duration with a total budget ranging from \$1 million - \$2.5 million
- Distinguishing Requirement:
 - at least one PI or co-PI who is an engineer
 - at least one PI or co-PI who is a computer, information or computational scientist
 - at least one PI or co-PI who is a social, economic or behavioral scientist

Type 1 Awards

- Theory, modeling, data collection and metrics projects that create:
 - knowledge, representations, methodologies, case studies, approaches

to conceptualize and study interdependent infrastructures as processes, services and systems

- Objective of team building to help clarify
 - basic terminology
 - assumptions and premises that enable theories
 - model and metric formalizations

for interdependent infrastructures as processes and services

Not intended for empirical testing of models/theories 4

Type 2 Awards

- Interdisciplinary research to conduct:
 - major new interdependent infrastructure research using empirical data
- Expected to include creation of knowledge, representations, methodologies and approaches to
 - conceptualize and study interdependent infrastructures as processes, services and systems

Critical Infrastructures

Critical infrastructures mainstay of national economy, security and health

Broad perspective

- Not only a collection of discrete components, but an ecosystem of interconnected and interdependent physical, cyber & human components
- Infrastructures seen broadly as processes delivering services

Food and

Agriculture

Banking and

Finance

Chemical

Critical

Manufacturing

Emergency

Healthcare and

Public Health

Materials and

Waste

Water

Services

http://testdhsgov.edgesuite.net/files/programs/gc_1189168948944.shtm 7

Interdependent Critical Infrastructure Systems (ICIs)

- Infrastructures are generally conceived here:
 - as networks of systems and processes
 - that function collaboratively and synergistically
 - that produce & distribute continuous flow of essential goods & services
 - as interdependent and connected

• Examples of interdependencies

(1) In a hazard event, emergency services (response/repair) required for restoration of critical services (power/transportation/healthcare...), and critical services enable emergency response/repair activities

(2) Manufacturing-Banking/Finance: Demand by manufacturing sector for financing depends on economy which affects loan rates, and economy depends on goods production from manufacturing sector

Overarching Goals

- 1. Create new approaches/solutions for design/operation of infrastructures as processes/services
- 2. Enhance understanding/design of interdependent critical infrastructure systems (ICIs) and processes that provide essential goods and services despite disruptions/failures/disturbances from any cause
 - natural, technological, organizational or malicious
 - various timescales and intensities
- 3. Create knowledge for innovation in ICIs to safely, securely, and effectively expand range of goods and services they enable
- 4. Improve effectiveness, efficiency, dependability with which they deliver existing goods and services

Research Objectives

- 1. Create new knowledge, approaches, solutions to:
 - increase resilience, performance, readiness in ICIs
- 2. Create frameworks/multidisciplinary models of ICIs, processes and services:
 - capable of analytical prediction of complex behaviors
 - capable of real-time control and dynamic adaptation/reconfiguration
 - responsive to system and policy changes
- 3. Develop frameworks to understand interdependencies created by interactions between:
 - physical, cyber, social, behavioral and economic ICI elements
- 4. Understand organizational, social, psychological, legal, economic, technical obstacles to:
 - improving ICIs, identifying strategies for overcoming obstacles

Predecessor RIPS: Awards Made

More info on current RIPS awards

http://www.nsf.gov/news/news_summ.jsp?cntn_id=132852

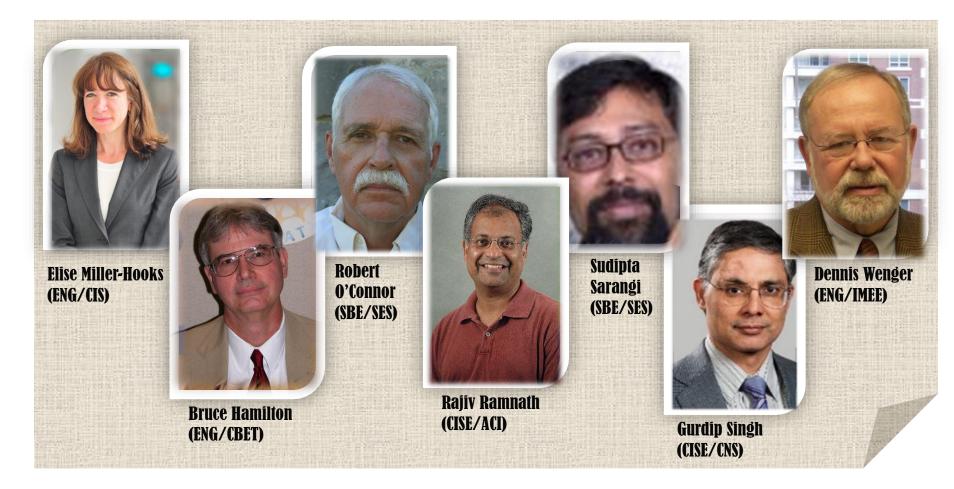
RIPS Type I

- (1) The Interdependent Criticality of Built, Social, and Information Infrastructures in Community Resilience: A New Framework and Participatory Process – *Lead: University of Colorado Boulder*
- (2) Human Geography Motifs to Evaluate Infrastructure Resilience Lead: University of Maryland
- (3) A Meta-Network Systems Framework for Resilient Analysis and Design of Modern Interdependent Critical Infrastructures – *Lead: New York University*

RIPS: Awards Made

RIPS Type II

- (1) Quantifying Disaster Resilience of Critical Infrastructure-based Societal Systems with Emergent Behavior and Dynamic Interdependencies – *Lead: University of Maryland*
- (2) Towards Resilient Computational Models of Electricity Gas ICI Lead: MIT
- (3) Strategic Analysis and Design of Robust and Resilient Interdependent Power and Communication Networks – *Lead: Washington State University*
- (4) Vulnerability Assessment and Resilient Design Lead: University of Florida
- (5) Resilience Simulation for Water, Power and Road Networks Lead: Arizona State University
- (6) Participatory Modeling of Complex Urban Infrastructure Systems Lead: Georgia Tech
- (7) Water and Electricity Infrastructure in the Southeast (WEIS) Approaches to Resilient and Interdependent Systems under Climate Change – Lead: Carnegie Mellon University


Solicitation

Solicitation URL

http://www.nsf.gov/mobile/publications/pub_summ.jsp?W T.z_pims_id=505180&ods_key=nsf15531

Cognizant Program Officers

Contact Information

Elise Miller-Hooks	ENG/CMMI	elisemh@nsf.gov
Bruce Hamilton	ENG/CBET	bhamilto@nsf.gov
Robert O'Connor	SBE/SES	roconnor@nsf.gov
Rajiv Ramnath	CISE/ACI	rramnath@nsf.gov
Sudipta Sarangi	SBE/SES	ssarangi@nsf.gov
Gurdip Singh	CISE/CNS	gsingh@nsf.gov
Dennis Wenger	ENG/CMMI	dwenger@nsf.gov

